Learning Three-dimensional Flow for Interactive Aerodynamic Design

Abstract

We present a data-driven technique to instantly predict how fluid flows around various three-dimensional objects. Such simulation is useful for computational fabrication and engineering, but is usually computationally expensive since it requires solving the Navier-Stokes equation for many time steps. To accelerate the process, we propose a machine learning framework which predicts aerodynamic forces and velocity and pressure fields given a three-dimensional shape input. Handling detailed free-form three-dimensional shapes in a data-driven framework is challenging because machine learning approaches usually require a consistent parametrization of input and output. We present a novel PolyCube maps-based parametrization that can be computed for three-dimensional shapes at interactive rates. This allows us to efficiently learn the nonlinear response of the flow using a Gaussian process regression. We demonstrate the effectiveness of our approach for the interactive design and optimization of a car body.

Publication
ACM Transation of Graphics 37(4) (SIGGRAPH 2018)
Nobuyuki Umetani
Nobuyuki Umetani
Associate Professor

My research interests include interactive smart engineering design tool using physics simulation and machine learning.