Morphological operations are among the most popular classic image filters. The filter assumes the maximum or minimum value within a window and is often used for light object thickening and thinning operations, which are important components of various workflows, such as object recognition and stylization. Circular windows are preferred over rectangular windows for obtaining isotropic filter results. However, the existing efficient algorithms focus on rectangular or binary input images. Efficient morphological operations with circular windows for grayscale images remain challenging. In this study, we present a fast grayscale morphology heuristic computation algorithm that decomposes circular windows using the convex hull of circles. We significantly accelerate traditional methods based on Minkowski addition by introducing new decomposition rules specialized for circular windows. As our morphological operation using a convex hull can be computed independently for each pixel, the algorithm is efficient for modern multithreaded hardware.